Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evolution and divergence of SBP-box genes in land plants.

Identifieur interne : 001D84 ( Main/Exploration ); précédent : 001D83; suivant : 001D85

Evolution and divergence of SBP-box genes in land plants.

Auteurs : Shu-Dong Zhang [République populaire de Chine] ; Li-Zhen Ling [République populaire de Chine] ; Ting-Shuang Yi [République populaire de Chine]

Source :

RBID : pubmed:26467431

Descripteurs français

English descriptors

Abstract

BACKGROUND

Squamosa promoter binding protein (SBP)-box family genes encode plant-specific transcription factors that control many important biological functions, including phase transition, inflorescence branching, fruit ripening, and copper homeostasis. Nevertheless, the evolutionary patterns of SBP-box genes and evolutionary forces driving them are still not well understood.

METHODS

104 SBP-box gene candidates of five representative land plants were obtained from Phytozome database (v10.3). Phylogenetic combined with gene structure analyses were used to identify SBP-box gene lineages in land plants. Gene copy number and the sequence and structure features were then compared among these different SBP-box lineages. Selection analysis, relative rate tests and expression divergence were finally used to interpret the evolutionary relationships and divergence of SBP-box genes in land plants.

RESULTS

We investigated 104 SBP-box genes from moss, Arabidopsis, poplar, rice, and maize. These genes are divided into group I and II, and the latter is further divided into two subgroups (subgroup II-1 and II-2) based on phylogenetic analysis. Interestingly, subgroup II-1 genes have similar sequence and structural features to group I genes, whereas subgroup II-2 genes exhibit intrinsic differences on these features, including high copy numbers and the presence of miR156/miR529 regulation. Further analyses indicate that subgroup II-1 genes are constrained by stronger purifying selection and evolve at a lower substitution rate than II-2 genes, just as group I genes do when compared to II genes. Among subgroup II-2 genes, miR156 targets evolve more rapidly than miR529 targets and experience comparatively relaxed purifying selection. These results suggest that group I and subgroup II-1 genes under strong selective constraint are conserved. By contrast, subgroup II-2 genes evolve under relaxed purifying selection and have diversified through gene copy duplications and changes in miR156/529 regulation, which might contribute to morphological diversifications of land plants.

CONCLUSIONS

Our results indicate that different evolutionary rates and selection strengths lead to differing evolutionary patterns in SBP-box genes in land plants, providing a guide for future functional diversity analyses of these genes.


DOI: 10.1186/s12864-015-1998-y
PubMed: 26467431
PubMed Central: PMC4606839


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evolution and divergence of SBP-box genes in land plants.</title>
<author>
<name sortKey="Zhang, Shu Dong" sort="Zhang, Shu Dong" uniqKey="Zhang S" first="Shu-Dong" last="Zhang">Shu-Dong Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Germplasm Bank of Wild Species, Kunming Institute of Botany of the Chinese Academy of Sciences, Kunming, 650201, China. sdchang@mail.kib.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Germplasm Bank of Wild Species, Kunming Institute of Botany of the Chinese Academy of Sciences, Kunming, 650201</wicri:regionArea>
<wicri:noRegion>650201</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ling, Li Zhen" sort="Ling, Li Zhen" uniqKey="Ling L" first="Li-Zhen" last="Ling">Li-Zhen Ling</name>
<affiliation wicri:level="1">
<nlm:affiliation>BGI-Yunnan, BGI-Shenzhen, Kunming, 650106, China. linglizhen@genomics.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>BGI-Yunnan, BGI-Shenzhen, Kunming, 650106</wicri:regionArea>
<wicri:noRegion>650106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yi, Ting Shuang" sort="Yi, Ting Shuang" uniqKey="Yi T" first="Ting-Shuang" last="Yi">Ting-Shuang Yi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Germplasm Bank of Wild Species, Kunming Institute of Botany of the Chinese Academy of Sciences, Kunming, 650201, China. tingshuangyi@mail.kib.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Germplasm Bank of Wild Species, Kunming Institute of Botany of the Chinese Academy of Sciences, Kunming, 650201</wicri:regionArea>
<wicri:noRegion>650201</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26467431</idno>
<idno type="pmid">26467431</idno>
<idno type="doi">10.1186/s12864-015-1998-y</idno>
<idno type="pmc">PMC4606839</idno>
<idno type="wicri:Area/Main/Corpus">001A74</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A74</idno>
<idno type="wicri:Area/Main/Curation">001A74</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A74</idno>
<idno type="wicri:Area/Main/Exploration">001A74</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evolution and divergence of SBP-box genes in land plants.</title>
<author>
<name sortKey="Zhang, Shu Dong" sort="Zhang, Shu Dong" uniqKey="Zhang S" first="Shu-Dong" last="Zhang">Shu-Dong Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Germplasm Bank of Wild Species, Kunming Institute of Botany of the Chinese Academy of Sciences, Kunming, 650201, China. sdchang@mail.kib.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Germplasm Bank of Wild Species, Kunming Institute of Botany of the Chinese Academy of Sciences, Kunming, 650201</wicri:regionArea>
<wicri:noRegion>650201</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ling, Li Zhen" sort="Ling, Li Zhen" uniqKey="Ling L" first="Li-Zhen" last="Ling">Li-Zhen Ling</name>
<affiliation wicri:level="1">
<nlm:affiliation>BGI-Yunnan, BGI-Shenzhen, Kunming, 650106, China. linglizhen@genomics.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>BGI-Yunnan, BGI-Shenzhen, Kunming, 650106</wicri:regionArea>
<wicri:noRegion>650106</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yi, Ting Shuang" sort="Yi, Ting Shuang" uniqKey="Yi T" first="Ting-Shuang" last="Yi">Ting-Shuang Yi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Germplasm Bank of Wild Species, Kunming Institute of Botany of the Chinese Academy of Sciences, Kunming, 650201, China. tingshuangyi@mail.kib.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Germplasm Bank of Wild Species, Kunming Institute of Botany of the Chinese Academy of Sciences, Kunming, 650201</wicri:regionArea>
<wicri:noRegion>650201</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (genetics)</term>
<term>Arabidopsis (genetics)</term>
<term>Bryophyta (genetics)</term>
<term>Embryophyta (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Duplication (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Multigene Family (genetics)</term>
<term>Oryza (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (biosynthesis)</term>
<term>Plant Proteins (genetics)</term>
<term>Populus (genetics)</term>
<term>Zea mays (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (génétique)</term>
<term>Bryophyta (génétique)</term>
<term>Duplication de gène (MeSH)</term>
<term>Embryophyta (génétique)</term>
<term>Famille multigénique (génétique)</term>
<term>Génome végétal (MeSH)</term>
<term>Oryza (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (biosynthèse)</term>
<term>Protéines végétales (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Séquence d'acides aminés (génétique)</term>
<term>Zea mays (génétique)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Arabidopsis</term>
<term>Bryophyta</term>
<term>Embryophyta</term>
<term>Multigene Family</term>
<term>Oryza</term>
<term>Plant Proteins</term>
<term>Populus</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Bryophyta</term>
<term>Embryophyta</term>
<term>Famille multigénique</term>
<term>Oryza</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Séquence d'acides aminés</term>
<term>Zea mays</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Evolution, Molecular</term>
<term>Gene Duplication</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genome, Plant</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Duplication de gène</term>
<term>Génome végétal</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Squamosa promoter binding protein (SBP)-box family genes encode plant-specific transcription factors that control many important biological functions, including phase transition, inflorescence branching, fruit ripening, and copper homeostasis. Nevertheless, the evolutionary patterns of SBP-box genes and evolutionary forces driving them are still not well understood.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>104 SBP-box gene candidates of five representative land plants were obtained from Phytozome database (v10.3). Phylogenetic combined with gene structure analyses were used to identify SBP-box gene lineages in land plants. Gene copy number and the sequence and structure features were then compared among these different SBP-box lineages. Selection analysis, relative rate tests and expression divergence were finally used to interpret the evolutionary relationships and divergence of SBP-box genes in land plants.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We investigated 104 SBP-box genes from moss, Arabidopsis, poplar, rice, and maize. These genes are divided into group I and II, and the latter is further divided into two subgroups (subgroup II-1 and II-2) based on phylogenetic analysis. Interestingly, subgroup II-1 genes have similar sequence and structural features to group I genes, whereas subgroup II-2 genes exhibit intrinsic differences on these features, including high copy numbers and the presence of miR156/miR529 regulation. Further analyses indicate that subgroup II-1 genes are constrained by stronger purifying selection and evolve at a lower substitution rate than II-2 genes, just as group I genes do when compared to II genes. Among subgroup II-2 genes, miR156 targets evolve more rapidly than miR529 targets and experience comparatively relaxed purifying selection. These results suggest that group I and subgroup II-1 genes under strong selective constraint are conserved. By contrast, subgroup II-2 genes evolve under relaxed purifying selection and have diversified through gene copy duplications and changes in miR156/529 regulation, which might contribute to morphological diversifications of land plants.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Our results indicate that different evolutionary rates and selection strengths lead to differing evolutionary patterns in SBP-box genes in land plants, providing a guide for future functional diversity analyses of these genes.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26467431</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>07</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<PubDate>
<Year>2015</Year>
<Month>Oct</Month>
<Day>14</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Evolution and divergence of SBP-box genes in land plants.</ArticleTitle>
<Pagination>
<MedlinePgn>787</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12864-015-1998-y</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Squamosa promoter binding protein (SBP)-box family genes encode plant-specific transcription factors that control many important biological functions, including phase transition, inflorescence branching, fruit ripening, and copper homeostasis. Nevertheless, the evolutionary patterns of SBP-box genes and evolutionary forces driving them are still not well understood.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">104 SBP-box gene candidates of five representative land plants were obtained from Phytozome database (v10.3). Phylogenetic combined with gene structure analyses were used to identify SBP-box gene lineages in land plants. Gene copy number and the sequence and structure features were then compared among these different SBP-box lineages. Selection analysis, relative rate tests and expression divergence were finally used to interpret the evolutionary relationships and divergence of SBP-box genes in land plants.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We investigated 104 SBP-box genes from moss, Arabidopsis, poplar, rice, and maize. These genes are divided into group I and II, and the latter is further divided into two subgroups (subgroup II-1 and II-2) based on phylogenetic analysis. Interestingly, subgroup II-1 genes have similar sequence and structural features to group I genes, whereas subgroup II-2 genes exhibit intrinsic differences on these features, including high copy numbers and the presence of miR156/miR529 regulation. Further analyses indicate that subgroup II-1 genes are constrained by stronger purifying selection and evolve at a lower substitution rate than II-2 genes, just as group I genes do when compared to II genes. Among subgroup II-2 genes, miR156 targets evolve more rapidly than miR529 targets and experience comparatively relaxed purifying selection. These results suggest that group I and subgroup II-1 genes under strong selective constraint are conserved. By contrast, subgroup II-2 genes evolve under relaxed purifying selection and have diversified through gene copy duplications and changes in miR156/529 regulation, which might contribute to morphological diversifications of land plants.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Our results indicate that different evolutionary rates and selection strengths lead to differing evolutionary patterns in SBP-box genes in land plants, providing a guide for future functional diversity analyses of these genes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Shu-Dong</ForeName>
<Initials>SD</Initials>
<AffiliationInfo>
<Affiliation>Germplasm Bank of Wild Species, Kunming Institute of Botany of the Chinese Academy of Sciences, Kunming, 650201, China. sdchang@mail.kib.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ling</LastName>
<ForeName>Li-Zhen</ForeName>
<Initials>LZ</Initials>
<AffiliationInfo>
<Affiliation>BGI-Yunnan, BGI-Shenzhen, Kunming, 650106, China. linglizhen@genomics.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yi</LastName>
<ForeName>Ting-Shuang</ForeName>
<Initials>TS</Initials>
<AffiliationInfo>
<Affiliation>Germplasm Bank of Wild Species, Kunming Institute of Botany of the Chinese Academy of Sciences, Kunming, 650201, China. tingshuangyi@mail.kib.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>10</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C402744">SBP protein, Papaver rhoeas</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044002" MajorTopicYN="N">Bryophyta</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019669" MajorTopicYN="N">Embryophyta</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020440" MajorTopicYN="N">Gene Duplication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="Y">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003313" MajorTopicYN="N">Zea mays</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>06</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>10</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>7</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26467431</ArticleId>
<ArticleId IdType="doi">10.1186/s12864-015-1998-y</ArticleId>
<ArticleId IdType="pii">10.1186/s12864-015-1998-y</ArticleId>
<ArticleId IdType="pmc">PMC4606839</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Gene. 2008 Jul 15;418(1-2):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18495384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Apr 05;4:80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23577017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15936-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21911372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2006 Sep;133(18):3539-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16914499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Apr;15(4):1009-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12671094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014;9(1):e86688</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24466202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1997 Aug;12(2):367-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9301089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2005 Apr;8(4):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetica. 2012 Sep;140(7-9):317-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23054224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(7):R46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15239831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D1114-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21097470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18730-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16352720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D68-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24275495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015;10(4):e0124621</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25909360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 Apr;39(4):544-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Apr;23(4):1273-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21498682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Dec;30(12):2725-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24132122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Mar;197(4):1353-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23346984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D302-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 Aug;27(8):1750-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20194423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W155-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Apr;146(4):1687-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18258690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jun;23(6):2285-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21705643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1999 Sep 3;237(1):91-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10524240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Jan;21(1):347-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19122104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Mar 12;337(1):49-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15001351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Aug;15(8):1749-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12897250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2007;7:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17359535</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Shu Dong" sort="Zhang, Shu Dong" uniqKey="Zhang S" first="Shu-Dong" last="Zhang">Shu-Dong Zhang</name>
</noRegion>
<name sortKey="Ling, Li Zhen" sort="Ling, Li Zhen" uniqKey="Ling L" first="Li-Zhen" last="Ling">Li-Zhen Ling</name>
<name sortKey="Yi, Ting Shuang" sort="Yi, Ting Shuang" uniqKey="Yi T" first="Ting-Shuang" last="Yi">Ting-Shuang Yi</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D84 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001D84 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26467431
   |texte=   Evolution and divergence of SBP-box genes in land plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26467431" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020